智慧工地人脸考勤系统技术分析
智慧工地人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动图像中检测和跟踪人脸,进行对检测到的人脸进行脸部的一些相关技术。
人脸识别需要积累采集到的大量人脸图像相关的数据,用来验证算法,不断提高识别准确性,现有的人脸识别系统在用户配合、采集条件比较理想的情况下可以取得令人满意的结果。但是,在用户不配合、采集条件不理想的情况下,现有系统的识别率将徒然下降。比如,人脸对比时,与系统中存储的人脸有出入,例如剃了胡子、换了发型、多了眼镜、变了表情都有可能引起比对失败。
人脸识别的优势在于其自然性和不被被测个体察觉的特点,所谓自然性,是指该识别方式同人类进行个体识别时所利用的生物特征相同。例如人脸识别,人类也是通过观察比较人脸区分和确认身份的,另外具有自然性的识别还有语音识别、体型识别等,而指纹识别、虹膜识别等都不具有自然性,因为人类或者其他生物并不通过此类生物特征区别个体。
不被察觉的特点对于一种识别方法也很重要,这会使该识别方法不令人反感,并且因为不容易引起人的注意而不容易被欺骗。人脸识别具有这方面的特点,它完全利用可见光获取人脸图像信息,而不同于指纹识别或者虹膜识别,需要利用电子压力传感器采集指纹,或者利用红外线采集虹膜图像,这些特殊的采集方式很容易被人察觉,从而更有可能被伪装欺骗。
人脸识别被认为是生物特征识别领域甚至人工智能领域困难的研究课题之一,人脸识别的困难主要是人脸作为生物特征的特点所带来的。
不同个体之间的区别不大,所有的人脸的结构都相似,甚至人脸器官的结构外形都很相似。这样的特点对于利用人脸进行定位是有利的,但是对于利用人脸区分人类个体是不利的。
人脸的外形很不稳定,人可以通过脸部的变化产生很多表情,而在不同观察角度,人脸的视觉图像也相差很大,另外,人脸识别还受光照条件、人脸的很多遮盖物、年龄等多方面因素的影响。
在人脸识别中,一类的变化是应该放大而作为区分个体的标准的,而另一类的变化应该是消除,因为他们可以代表同一个个体。通常称一类变化为类间变化,而另一类被称为类内变化。对于人脸,类内变化往往大于类间变化,从而使在受类内变化干扰的情况下利用类间变化区分个体变得异常困难。
人脸识别主要用于身份识别。由于视频监控正在快速普及,众多的视频监控应用迫切需要一种远距离、用户非配合状态下的快速身份识别技术,以求远距离快速确认人员身份,实现智能预警。人脸识别技术无疑是很好的选择,采用快速人脸检测技术可以从监控视频图像中实时查找人脸,并与人脸数据库进行实时比对,从而实现快速身份识别。
本文由陕西领航软件技术公司小编整理发布,陕西领航软件技术有限公司长期专注于交通建设相关行业,是该领域内著名的
智慧工地解决方案提供商和开发商。旗下产品有智慧工地APP,
智慧工地管理系统、隧道监控量测管理系统、拌合站管理系统、精确人员定位系统、隐蔽工程、智能张拉等14个管理系统软件著作权。